铀空心阴极放电灯的光谱特性研究

殷立峰 林福成 张桂燕 景春阳 姜世杰* 王之江** (中国科学院上海光学精密机械研究所)

提 要

本文报道了利用自制铀空心阴极放电灯进行 U 发射光谱的测量研究。 通过一系列铀空心阴极放电 灯光谱特性参数的测量,分析了作为光谱测量用的铀空心阴极放电灯的最佳工作参数。并且报道了我们 测量的部分 U 原子发射光谱的发射强度和 *of* 数。 关键词: 铀;空心阴极放电;发射谱。

U 是天然存在的最重元素,原子序数为 92, 是一种放射性元素。U 原子具有复杂的能级结构和密集的原子光谱线。早在 1946 年, Kiess 的研究工作就给出了一部分U原子光谱和能级的数据。此后,近 40 年时间内,国外对 U 光谱进行了大量研究,陆续有一些研究结果发表,但重要成果仍然是保密的。近十几年来,有一部分有关 U 光谱数据的资料发表在美国的 Los Alamos Scientific Laboratory (LASL)的几份报告中^[1~4]。

参考文献 [2~5] 主要报道了实验测定的 U 原子光谱数据和能级参数。这些数据都是 利用高精度的大型设备如 9.15 m 的 Paschen-Range 摄谱仪、大型 Fabry-Perot 干涉仪、 Fourier 变换光谱仪等进行测量并由计算机处理得到的。

为了测定 U 原子光谱数据,必须获得 U 原子蒸汽。由于 U 金属具有高达 2500 K 的蒸 发温度,因而如何获得 U 原子蒸汽在技术上就具有一定的难度。在已经知道的产生高密度 难熔材料原子蒸汽的方法中,阴极溅射是最简单的方法之一。铀空心阴极放电提供了一种 可用于各种物理现象包括光谱研究的 U 蒸汽源。铀空心阴极放电灯加工简单、工作可靠、 容易维护、易于进行放射性防护,具有很多优点。

我们利用自制的 U HCD 灯和常规光谱仪器进行了 U 发射光谱的测量研究,获得了一系列 U HCD 灯的光谱特性参数。实验表明,在我们的条件下获得的结果与美国 LASL 利用 高精度设备所得到的结果是一致的。

自制的铀空心阴极放电灯采用了矩形槽空阴极结构,阴极剖面见图1所示。贫铀纯金 属制成的阴极棒上阴极槽的截面是3mm×7mm的矩形,阴极的有效长度是100mm。灯 内所充的缓冲气体是 Kr。用直流稳压电源供电以保持放电稳定。用普通的0.6m光栅单 色仪测量光谱,对讯号进行调制并利用锁相放大器以提高探测灵敏度和信噪比,图2为实验 装置示意图。实际测量前,利用已定标的标准钨带灯,对单色仪(包括光电倍增管)的频率响 应曲线进行了测定。在实测中,利用这一曲线对实验数据进行修正。

收稿日期: 1989年4月19日; 收到修改稿日期: 1989年7月6日

^{*} 上海光机所九室。

^{**} 上海光机所十一室。

在不同的放电电流及 Kr 气压下测量了 U 和 Kr 的发射光谱强度。图 3 显示了四个 U 跃迁和两个 Kr 跃迁(U: 5780.6 Å、5836.0 Å、5915.4 Å、5948.6 Å、 Kr: 5866.8 Å、

5870.9Å)在不同放电电流下的发射谱强度。结果表明, 在大电流工作时,随着电流的增加,U和Kr的发射谱强 度都出现了明显的饱和甚至向下弯曲的现象。特别是对 于下能级具有较大密度粒子集居数的跃迁(U5915.4Å; 下能级为基态,Kr5870.9Å;下能级为亚稳态)这一现象 更为明显,因而说明该现象主要起因于自吸收效应。由 图 3 可以看出,在放电电流小于 40~50 mA时,自吸收 效应的影响就很小甚至可以忽略。随着放电电流的减小, 与 Kr发射谱的变化不同,U发射谱强度明显减小,并且 在约 15 mA 附近基本减小到零。这是由于空阴极放电 中阴极原子蒸汽的溅射密度与放电电流的 n 次方成正比(n

与阴极材料,缓冲气体及阴极温度有关,大约为2~5),因而在小放电电流时,U原子蒸汽密度急剧减小所致。根据U发射强度与放电电流的关系曲线,在利用自制铀空心阴极放电灯进行发射谱研究时,可以选择一个合适的放电电流。

Fig. 2 Schematic drawing of the experimental arrangement

对于处于局部热力学平衡(LTE)的原子跃迁自发辐射强度,有下列公式: $I\lambda^2/gf \propto \exp(-E_u/kT)$,

 $I\lambda^{3}/gf \propto \exp(-E_{u}/kT),$ (1) 其中 I 为跃迁的自发辐射强度, λ 为跃迁波长, gf 为跃迁的相对振子强度, E_{u} 为跃迁上能级 能量, b 为 Boltzmann 常数, T 为原子激发温度。利用(1)式由测量的发射谱强度和已知的 gf 数,可以计算空心阴极放电灯中的原子激发温度。采用 Corliss 给出的 U 原子跃迁的 gf数,可以计算空心阴极放电灯中的原子激发温度 T 随放电电流 的变化关系(图 4), 和不同 Kr 气压下的 T(图 5)。结果表明,随着放电电流的增加, T 的基本趋势是减小, 但在 20~80 mA 的电流范围内,这一变化不是很大。Kr 气压的变化对 T 的影响要大一些, 这一 点表明 U 原子的激励过程与缓冲气体 Kr 有很大关系。

图 6 给出了不同 Kr 气压下 U 发射谱强度的变化。显然,对于 U 原子的激励,存在着一个最佳的缓冲气体压强范围。在我们的实验条件下,这一最佳 Kr 气压的范围约为1.0~1.5 Torr。

利用自制的铀空心阴极放电灯和常规的光谱仪,我们测定了 U 的原子发射光谱。 通过

			· · · · · · · · · · · · · · · · · · ·		<u> </u>	
Wavelength(%)	Upper level(cm ⁻¹)	J.	Lower level(cm ⁻¹)	J	Intensity	gf
5852.0	21 536 ^e	3	4453	4	13.8	0.046
5854.5	23325 ^e	5	• 6249	6	ż. 95	0.022
5856.4.	1707.0 ^e	6	0	6	8.37	0.0036
5859.7	27349 ^e	5	10288	6	2.45	0.11
5862.0	21329 ^e	5.	4275	6	5.43	0.016
5863.4	240 70	5	7020 ^e	4	6.26	0.065 .
5868.8					1.78	
58 74.8	27086 ^e	8	10069	7	1.33	
58 78.1	24333 ^e	7	7326	7	1.32	
58 83.5	22754 ^e	6	5762	5	1.12	
5884.4	21265 ^e	6	4275	6	1.58	0.0047
5887.6					2.00 .	
5891.4	27020	5	10051 ^e	5	1.47	•
5892.6	20766 ^e	7	3800	7	12.8	0.030
5898.8	23197 ^e	7	6249	6	7.95	0.056
5902.5	20805 ^e	3	3868	3	18.7	0.045
5905.1	16929 ^e	· 5	0	6	3.11	0.0013
5906.1	23932 ^e	5	7005	6.	1,69	-
. 5906.1	24118 ^e	3	7191	2	1,69	
5907.8	30490 ^e	8	13567	7	0.70	
5910-4	24560 ^e	7	7645	8	1.78	0.023
5911.6	20712 ^e	8	3800	7	7.12	0.017
5915.4	. 16900 ^e	7	0	6.	430	0.18
5919.7	23908	3.	7020 ^e	4	2.38	0.035
5923.7	28184 ^e	9	11308	9	3,99	
5 923 .7	21 329 ^e	5	4453	4	3.99	
5925.5	24517 ^e	9	7 645	8	8,66	0.11
5927.9					0.72	
5 929.3	20661 ^e	6	3800	7	6.25	0.014
5933.8	17468 ^e	4	620	5	38.3	0.021
5935.5	23848 ^e	7	7005	6	1.96	0.016
5937.3	27394 ^e	5	10557	4	0,87	
5940.0	24022 ^e	3	7191	2	2.12	0.022
5942.8	22584 ^e	4	5762	5	5.98	0.033
5948 .6	24451 ^e	8	7645	8	7.42.	0.094

Table 1 Experiment data for some lines of U

选择合适的铀空心阴极放电灯工作参数,获得了满意的结果。表1列出了 5850 Å~5950 Å 范围内的测量结果,其中所列出的上、下能级和 J 量子数是引自参考文献[3]和[5],上标 e 表示偶宇称能级,凡是未列出上下能级值的是暂时未确定能级归属的跃迁。利用这一实验 装置也能测量到一些一价 U 离子的谱线。但在表1 所列的波长范围内没有 测量 到。对 实 验中的各种误差来源进行了测定和分析,估计相对误差 <20%,绝对误差不大于 0.35 相对 强度单位。这一测量用的铀空心阴极放电灯的工作参数为: Kr 气压 1.4 Torr; 放电电流

5

4275

6

6.97

0.019

21078^{.e}

5949**.7**

40 mA,相应于这些工作参数的 U 原子激发温度 $T = 3200 \pm 200$ K。根据测量结果计算的 gf 数也列在表 1 中, gf 数的相对误差大约为 40%。除了实验测量中的系统误差外,主要影 响 gf 数精确度的是原子激发温度计算的误差,这是由于空心阴极放电对 Boltzmann 分布 的偏离和 Corliss^{[53}数据的误差所造成的。

利用铀空心阴极放电灯通过阴极溅射获得 U 蒸汽是一种简单易行的方法。我们利用 自制的铀空心阴极放电灯和常规光谱仪器进行了 U 发射光谱的测量研究,获得了很好的结 果。所获得的 U 光谱数据为今后进一步的研究提供了良好的基础。

参考文献

- David W. Steinhaus; "Present Status of the Analyses of the Arc Spectrum of Uranium(Ul)", LA-3475, Los Alamos Scientific Laboratory of the University of Califonia, Los Alamos, New Mexico 87544, 1966).
- [2] David W. Steinhaus; "Present Status of the Analyses of the First and Second Spectra of Uranium (Ul and UII) as Derived from Measurement of Optical Spectra.", LA-4501, Los Alamos Scientific Laboratory of the University of Califonia, Los Alamos, New Mexico 87544, 1971).
- [3] David W. Steinhaus. "The Emission Spectrum of Uranium between 19080 and 30261 cm⁻¹." LA-4944 Los Alamos Scientific Laboratory of the University of Califonia, Los Alamos, New Mexico 87544, 1972).
- [4] Byron A. Palmer et. al.; "An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge" (LA-8251-MS, Los Alamos, New Mexico 87544, 1980).

[5] C. H. Corliss; J. Res. Natl. Bur. Stand. 1976, 80A, No. 1, 1.

Investigation of the spectral characteristics of U HCD lamp

YIN LIFENG, LIN FUCHENG, ZHANG GUIYAN, JING CHUNYANG, JIANG SHIJIE AND WANG ZHIJIANG (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

(Received 19 April 1989; revised 6 July 1989)

Abstract

Investigation of the emission lines of U atom by using a homemade U hollow cathode discharge lamp is reported. From the measurements of spectral characteristic parameters of U HOD lamp the optimal working conditions for spectral measurements are obtained. The measured data of some emission lines and gf values of U atom are also given.

Key words: Uranium; hollow cathode discharge; emission spectrum.